量力网课笔记:不确定原理
不确定原理
1.Uncertainty Principle
①Heisenberg Uncertainty Principle(HUP)
②Generalized Uncertainty Principle(GUP)
Derivation:
Expectation value:
2.Proof of GUP
偏差算符:
$\hat{\sigma}_A$,$\hat{\sigma}_B$性质
Hermitian:
=>
Commutator:
Expectation value of $\left[\hat{\sigma}_A,\hat{\sigma}_B\right]$,$\left\{\hat{\sigma}_A,\hat{\sigma}_B\right\}$:
(skew-Hermitian)
if $\hat{A}$ is skew-Hermitian,then $\langle\hat{A}\rangle=c\in\mathbb{I}$
任意算符可分解为两个算符,其中一个是厄米算符,另一个是反厄米算符
(Hermitian)
=>
=>
Now proof:
Cauthy-Schwarz inequality:
①
②
equality iff $\vec{u} = \lambda\vec{v}$
=>
So we have:
then:
存在一个态$\ket{\psi}$使得等号成立,则$\ket{\psi}$称为最小不确定态(minimum uncertainty state)
Minimum uncertainty states / Minimum uncertainty wave packets
$\hat{x},hat{p}$=> $\Delta\hat{x}\Delta\hat{p}\geqslant\frac{\hbar}{2}$
Define:
$\ket{\psi}$为最小不确定态
$\braket{\alpha|\alpha} \geqslant 0$ equality iff $\ket{\alpha} = \vec{0}$
二次多项式,所以
所以
即
Heisenberg uncertainty principle
when $\Delta=0$ => $ \Delta\hat{x}\Delta\hat{p}=\frac{\hbar}{2}$
=>
=>
=>
=>
=>
(Gauss function)
Two Remarks:
①只要算符不对易,就有不确定性
②可以找到最小不确定态
4.Energy-time uncertainty principle
Time is NOT an observable
Ehrenfest’s theorem:
if $\left[\hat{A},\hat{H}\right]\neq0$ and $\frac{\partial\hat{A}}{\partial t}=0$
=>
=>