量力网课笔记:不确定原理

量力网课笔记:不确定原理

七月 13, 2023

不确定原理

bilibili

1.Uncertainty Principle

①Heisenberg Uncertainty Principle(HUP)

②Generalized Uncertainty Principle(GUP)

Derivation:

Expectation value:

2.Proof of GUP

偏差算符:

$\hat{\sigma}_A$,$\hat{\sigma}_B$性质
Hermitian:

=>

Commutator:

Expectation value of $\left[\hat{\sigma}_A,\hat{\sigma}_B\right]$,$\left\{\hat{\sigma}_A,\hat{\sigma}_B\right\}$:

(skew-Hermitian)

if $\hat{A}$ is skew-Hermitian,then $\langle\hat{A}\rangle=c\in\mathbb{I}$

任意算符可分解为两个算符,其中一个是厄米算符,另一个是反厄米算符

(Hermitian)
=>

=>

Now proof:

Cauthy-Schwarz inequality:

equality iff $\vec{u} = \lambda\vec{v}$

=>

So we have:

then:

存在一个态$\ket{\psi}$使得等号成立,则$\ket{\psi}$称为最小不确定态(minimum uncertainty state)

Minimum uncertainty states / Minimum uncertainty wave packets

$\hat{x},hat{p}$=> $\Delta\hat{x}\Delta\hat{p}\geqslant\frac{\hbar}{2}$

Define:

$\ket{\psi}$为最小不确定态
$\braket{\alpha|\alpha} \geqslant 0$ equality iff $\ket{\alpha} = \vec{0}$

二次多项式,所以

所以

Heisenberg uncertainty principle
when $\Delta=0$ => $ \Delta\hat{x}\Delta\hat{p}=\frac{\hbar}{2}$

=>

=>

=>

=>

=>

(Gauss function)

Two Remarks:
①只要算符不对易,就有不确定性
②可以找到最小不确定态

4.Energy-time uncertainty principle

Time is NOT an observable

Ehrenfest’s theorem:

if $\left[\hat{A},\hat{H}\right]\neq0$ and $\frac{\partial\hat{A}}{\partial t}=0$
=>

=>